(v7 SGS-THOMSON
Y/ (1CROELECTRONIGS APPLICATION NOTE

Synchronous Power Line Modem Communication
with ST9 Multifunction Timer

Required tools: ST9/ST7537 PLM Starter Kit, Author: O. GARREAU

INTRODUCTION

This application note provides an example of an ST9 MFT application handling a Home
Automation synchronous protocol. It presents a way to easily communicate on a synchronous
Network. Each node of this network may consist of the Power Line Modem (PLM) Starter Kit
or of the Home Service (HS) macro-component, provided that it includes the ST9 plus ST7537
modem chipset.

This PLM Starter Kit helps also in developing the ST9 version of 'HOME SERVICE’ European
Home Automation Protocol.

The ST7537 modem may work in both synchronous and asynchronous modes at a Baud rate
of 1200. There is no problem in building an asynchronous interface with the ST9 due to the
capabilities of its SCI (Serial Communication Interface). The asynchronous protocol may be
programmed directly and all work is done by the SCI. However the synchronous protocol has
different requirements.

In order to program a synchronous protocol, it is not possible to use the SCI lines that are
reserved for asynchronous communications. The solution resides in using the Multifunction
Timer of the ST9.

The most simplified synchronous protocol may consist in a simple 3-wire link (The Receive
Data line, RxD, the Transmit Data line, TxD and the signal Ground).

Similar to the asynchronous mode, no clock signal is available in the PLM synchronous mode
and the time reference is included in the RxD signal. It is clear that the clock frequency should
be known and determined in advance by both emitter and receiver. For our application
working as the LAYER 0 of the 'HS’ Protocol, this frequency is 1200Hz and generates thus a
1200 baud rate. Note that the signals concerned (RxD and TxD) are 'NRZ, Non Return to
Zero’ signals.

The first task that the following procedure performs is 'Transmission BitClock Recovery’. Here
the Multifunction Timer TO of the ST9 is used in the background. This basic clock signal is also
output on a timer pin (TOOUTA).

The procedure that tests the link between distant modems, consists in sending from the
master modem a standard frame, compatible with the 'HS’ protocol or not, and in sending
back from the slave modem the received frame in order to make a match test, for example, in
the master system (which is, in our case, controlled by a Windows 3.1 ;,, program).

This method can even validate asynchronous modes. The test frame is stored in the internal
memory of the ST9 (in the first 128 bytes of the Register File).

AN430/ 03,94

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

In addition to the RxD and TxD lines, it is possible to improve protocol management with extra
lines called RSTO, CDn, RXTXn and WDn. These lines mean respectively RESET modem
controller, CARRIER DETECT, RECEIVE OR TRANSMIT, and WATCHDOG signal. 'n’ means
that the signal is active LOW.

These lines are specific to the ST7537 modem as it is working in its HALF-DUPLEX mode.
The direction of data flow is chosen by RXTXn state. CDn indicates that the modem is about
to receive data. The WATCHDOG signal is used by the modem to check the presence and
activity of the CPU (ST9) and if activity (meaning a minimum of one negative transition per
second) is absent, the modem will try to reset the CPU.

To prevent this shut down, WDn may be connected to the recovered BitClock (1200
transitions per second) or to an IO port (P76 in this case).

Note: To fully understand this Note, it is recommended that the reader refers to the relevant
chapters of the ST9 databook for the Multifunction Timers.

= &7 TSN

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

1 HARDWARE LINK BETWEEN ST9 AND ST7537

Figure 1 shows the schematic of this link. As can be seen, no additional hardware or
components are needed. This interface needs only 5 point-to-point wires plus the signal
ground. It is the lowest cost way to connect a ST7537 to an ST9.

All wires are TTL compatible and mono-directional. Only one 8-bit port 7 of the ST9 is
required, Port 3.0 (TOINA) is also reserved for this application, signal on TOOUTA (P3.1) is the
recovered clock, event trigger and control the timer, P7.3 P7.4 P7.5 P7.6 P7.7 are used as
simple TTL I/O bits.

The RxD line is managed by a technique which attaches a double function to this single
signal. RxD triggers the timer and is acting as a synchroniser. Its level indicates also the input
bit state. The kernel of this application is a sophisticated software PLL.

P7.3 is programmed as an input and reads Carrier Detect signal (CDn).

P7.4 is programmed as an input and reads the current input bit state (RxD).

P7.5 is programmed as an output and sends the current output bit (TxD).

P7.6 is programmed as an output and activates the WatchDog signal (WD).

P7.7 is programmed as an output and chooses the direction of data flow (RXTXn).

The corresponding timing chart of these signals is given in the next section. Note that it is not
necessary to connect ST7537 signals like DVCC (Digital Output Supply Voltage), RSTO
(Reset Output) and MCLK (Master Clock) when this application is running on the ST9
STARTER KIT. The signal ground is of course essential and common to all these lines. When
the ST7537 Starter Kit is in stand-alone mode, the ST9 uses RSTO and MCLK.

Figure 1. Direct connection in the stand-alone mode

oscIN [} - {] McLK
RESET [} % {] rRsTO
N.c. —{] bvcc

P76 (1/0) [} - {1wD

P77 (/0) [} - {] RXTX

P73 (/0) [-t {1co

P75 (/0) [J - {1 <D

P74 (1/0) [———
P30 (TOINA) [J ~t {1 RxD

GND [} WL { Signal Ground

ST9 ST7537

&7 TSN =

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

2 TIMING CHARTS OF CONTROL AND DATA SIGNALS

Figure 2 shows the timing and event charts considering an example of 3 bits input or output or
both.

The first chart displays Carrier Detect signal, which enables the start of transfer.

The second timing shows the input signal used as trigger and data signal. Each '0’ or '1’ pulse
lasts 833.3 microSeconds. The third line is a relative time axis for the internal counter TO. The
next axis is the 'Event’ axis. The next chart displays the output waveform for the recovered
BitClock; this preferably should have a 50% cyclic ratio.

The last chart is an example of the TxD output signal.

All the powerful features of a ST9 timer are used in this application. These include Hardware
Trigger (HT), Software Trigger (ST), Compare (CMP0O, CMP1) and Over/UnderFlow (OUF)
Events. Both HT and ST events reload TIMERO from the REGOR Load register. The HT event
is automatically generated by every low to high or high to low transition on the RxD line. The
CMP1 event is used to rebuild the initial clock frequency (of the emitter). The CMPO event
samples the input signal on RxD or outputs the transmitted signal on TxD or both. The OUF
event (over-under/flow) allows the counter to be reloaded by an ST action, this acts as a
WatchDog, controlled under software and corrects (synchronises) for frequency shift,
frequency fluctuations and phase shift.

During the time gap (called DT), these parameters may vary and can be taken into account, if
their variation is not too wide. A software parameter controls this correction : 'variation’
represents a percentage of the whole bit pulse period, called T.

= &7 TSN

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

Figure 2. Timing chart of signal and data signals

CD
Carrier
Detect RECEPTION MODE
sample
RxD =\ sample sample
Trig+10 A A 0)
9=z ¥ 1 ¥ 0 0 $
RXTX=1 e = } =
Relative T+DT T/2 T+DT T TI2 T T/2 T+DT T
TIME H : H : H : H>
for T0 T DT 0 DT 0 DT 0
HARD TRIG HARD TRIG OUF : SOFT TRIG HARD TRIG
EVENT - : - : - : >
CMP1 CMPO CMP1 CMPO cMP1 CMPO cMP1
WD t t| Tro=a17ps t t t t t
TOOUTA =toggle |e——>
™D
RXTX=0
yOy 'l' ’1’
Figure 3. Software structure
Initialisation procedure
CMPO Interrupt Procedure
IRET
Main procedure
receive and send test frame
OUF Interrupt Procedure
Process end IRET
Ly 353-THOMSON Sl24
Y7, KiCROELECTROMICS

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

Figure 4. Procedure Algorithm

Init procedure

CONFIGURE COUNTER AND 10
ONE SHOT MODE

RETRIGGER MODE

COUNT DOWN MODE
FALLING/RISING EDGE
RELOAD MODE

REGOR <-T+DT

CMPOR <- T/2

Hard trigger No soft

- RELOAD COUNTER WITH REGOR

CMP1 event No soft

TOGGLE TOOUTA

CMPO event IT procedure

TEST MODE RECEIVE/EMIT
RECEIVE BIT

SEND BIT

REGOR <- T+DT

HT ARRIVED
o}
HT NOT ARRIVED
OUF event IT proc
REGOR <- T
SOFT TRIGGER
o}

= &7 TSN

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

3 SUMMARY

The aim of this application note is to demonstrate to Hardware designers just how simple it is
to interface an ST7537 with a member of the ST9 family. The schematic described in part one
is an example of the electrical link, however it also depends on a good quality and conformity
of input signals.

First, it is obvious that the RxD signal should be perfectly stable and defined during the
acquisition phase. Then, its working frequency (1200 Hz) should be reasonably stable and the
stability should not be worse than 90%. With practical testing, it is shown that the application
works correctly between 1150 Hz and 1250 Hz. All these characteristics are software
programmable.

This routine has been tested at various transmission rates, from 300 Hz up to 9600 Hz. The
software defines constants called 'Rxxxxbds’ that correspond to these rates. That way, this
application software will stay compatible with new generations of multi-speed ST7537 modem.

Warning : the user must RECALCULATE these constants if the ST9 has an external clock
(crystal) DIFFERENT to the frequency used in this example.

The nominal working frequency should be 1200 Hz or 2400 Hz in the case of the 'HS’
protocol.

In this protocol, data packets are composed of a particular frame. Each frame starts with a
specific header. Typically the beginning of such a header is 4 bytes: generally FFh, FFh, AAh
and AAh. Many bits of the first FFh may be lost but the synchronisation is made actually on
the AAh bytes. It is thus possible to improve the accuracy of the process. The byte AAh is a
succession of bits at "1’ and '0’ and can allow frequency optimisation. Using first the timer O in
its 'Capture’ mode will define the precise distant frequency, a pre-calibration.

This software improvement may be useful in case of a distant frequency very far from the
expected working frequency (1200 Hz in this case).

The user is free to modify these routines. The bits of Port 7 (P73, P74, P75, P76 and P77) are
used here as I/O bits. It is clear that another port may be defined as I/O port in order to free
access to PORT 7.

Finally, the user can test a link between two distant nodes, or on a bigger network, and use
equally synchronous or asynchronous protocol .

As a conclusion, the ST9 microcontroller is a cost effective solution for home automation
modem applications and a synchronous protocol like '"HS’ or other customer protocol can be
performed in the background, requiring little CPU time.

&7 TSN =

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

Appendix 1. ST9 Software listing.

; MODEM+ST9 APPLICATION NOTE

; FILE: HS.ST9 (compile with AST9)

; First version: 26/05/93

; Last revision: 13/10/93

; Author : Olivier Garreau

; Department PPG, Section ST9 SUPPORT/APPLICATION (Grenoble)
; Running on ST7537 STARTER KIT, here in stand-alone 11MHz

; ST7537 starter kit version : MB076b

; ST7537 version :V 3.0

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkhkkkkkkkkkkkhkkhkkkkkkkkkkkkkkkk

goal : SYNCHRONOUS BIT CLOCK RECOVERY, /0 BUFFERS MANAGER
Validation software for a serial link between two
based on ST 7537 modems, Full Duplex capability
one modem driver is a PC, second modem driver is the ST9

example of application : 'HOME SERVICE' AUTOMATION PROTOCOL

modem used . ST7537 (always working in half duplex mode)
input signals : RxD connected to TOINA(P30) AND P74

CDn (carrier detect) connected to P73 (by jumper)
output signals . Bit clock recovered on TOOUTA (P31).

; P76 output on modem WatchDog WDn.
; RXTXn (select direction) connected to P77
; TxD connected to P75

; modified . Input Bit buffer permanently filled

; Output Bit Buffer permanently sent

use underflow, compare0 and comparel event interrupts
-OUF interrupt reload the timer
-COMPAREQO interrupt sample data on RxD line and update Bit Buffer
and manage TxD output signal
-COMPAREL generate output recovered clock (no procedure)
Process running in background:
- read a synchronous frame (max 128*8 bits)
- write it back to the emitter
- then stand by to check watchdog circuit (wait for reset)

skkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkhkkkhkkkkkhkkkkkhkkkkkkkkkkkhkkkkkhkkkkkkkkkhkkkkk
1

skkkkkkkkkkhhhhhhhkhkhkhkhkkkikkx

* Include file definition *

*kkkkkkkkkhkkkhkhkhkkkkkkkhihx

jinclude ”.\..\\include\st904x.inc”

; REGISTERS DEFINITION

skkkkkkkkkkkhkkkkkhkkkkk
1

data = ro ; data.b2 contains binary information

status = ri ; hold flag of timer

ptr = r2 ; read buffer pointer

num_bit_r = r3 ; bit number in input byte

ptw = r4 ; output buffer pointer

num_bit_w = r5 ; bit number in output byte

mode = ré ; mode selection(input,ouput or full duplex)
tempol = r7 ; 8 bits register

tempo = r8 ; 16 bits register

= &7 TSN

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

sys_stack = OCFh ; system stack
end_buf = 07Fh ; common end of input and output buffer
start_buf = 000h ; start of both buffers

ok kR kdokk ks kkkkkkkkkk
)

; CONSTANTS DEFINITION

skkkkkkkkkkkkkkkkkkhkkkk
1

pageF = (OFh*2)
page8 = (08h*2)
;time_step = 250 ; minimum time step is 250 nanoseconds
;period = 833333 ; 833333 nanoseconds corresponds to 1200 Hz
;T = period/time_step ; period for timer
DT = T/variation ; Delta T for timer

; different clock rate
R9600bds = 416 ; 9600 baud
R4800bds = 833 ; 4800 baud
R2400bds = 1666 ; 2400 baud
R1200bds = 3072 ; 1200 baud modified for 11.0592 Mhz

; should be 3333 with 24 Mhz crystal (/2)
R600bds = 6666 ; 600 baud
R300bds = 13333 ; 300 baud
.defstr mode_transmit "r6.0" ; flag for transmission
.defstr mode_receive "r6.1” ; flag for reception
RxD = 4 ; position of RxD bit
TxD = 00100000b ; TxD bit
CD = 3 ; position of Carrier Detect bit
RXTX = 10000000b ; RXTX hit
WATCHDOG = 01000000b ; WDn signal
T = R1200bds; 'Home Service' clock frequency
variation = 10 ; +-variation around correct signal edge
DT = T/variation ; allow +-10% variation

; the effective receive frequency is 1200.12 Hz

t0_vect = 010h ; Start of Timer O vector table.

skkkkkkkkkkkkkkkkhkk

MACRO DEFINITIONS

skkkkkkkkkkkkkkkkhkk
)

.macro tOstart ; Start counter
begin [PPR] {
spp #TOD_PG
or T_IDMR, #gtien ; TO Global interrupt mask disabled.
or T _TCR,#cen ; Counter enabled.
}
.endm
.macro tOstop ; stop counter
begin [PPR] {
spp #TOD_PG
and T_TCR##~cen ; Counter disabled.
and T_IDMR,#~gtien ; TO Global interrupt mask enabled.
.endm

&7 TSN =

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

.macro

.endm

.macro

.endm

.macro

.endm

.macro

.endm

.macro

.endm

.macro

.endm

.macro

.endm

set_mode_transmit

bset mode_transmit
begin [PPR] {

spp #P7D_PG

and P7DR,#~RXTX

reset_mode_transmit

bres mode_transmit
begin [PPR] {

spp #P7D_PG

or P7DR#RXTX
}

set_mode_receive

bset mode_receive
begin [PPR] {

spp #P7D_PG

or P7DR,#RXTX
}

reset_mode_receive
bres mode_receive
begin [PPR] {

spp #P7D_PG

or P7DR#RXTX
}

wait_CD_high ?loop_wait
begin [PPR] {

spp #P7D_PG
loop_wait:

Id data,P7DR

btjt data.CD,loop_wait
}

wait_CD_low
begin [PPR] {
spp #P7D_PG
loop_wait:
Id data,P7DR
btjf data.CD,loop_wait

}

?loop_wait

do_tempo
clr tempol
ldw tempo, #3000
loopw [tempo] {
loop [tempol] {
}
}

skkkkkkkkkkkkkkkhkk

10/24

‘ « MICROELECTRONMICS

; set transmit flag and line RXTX
; set flag
; save PPR
; set port7 data page
; select transmit mode of modem

; reset transmit flag and line RXTX
; reset flag
; save PPR
; set port7 data page
; select receive mode of modem

; set receive flag and line RXTX
; set flag
; save PPR
; set port7 data page
; select receive mode of modem

; reset receive flag and line RXTX
; reset flag
; save PPR
; set port7 data page
; select receive mode of modem

; wait for "1 to 0” transition on CD

; read input CD bit (data.b4)
; wait for low level

; wait for "0 to 1" transition on CD

; read input CD bit (data.b4)
; wait for high level

; first loop
; tempo value

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

; INTERRUPT VECTORS

skkkkkkkkkkkkkkkkkk
1

power_on::
.word main ; RESET vector.

.word main ; Divide by 0 vector not used

.word main ; no top level interrupt

.org t0_vect ; table of timer interrupt vectors

.word ouf_proc ; vector of ouf interrupt

.word error_proc ; not a vector

.word error_proc ; no capture procedure, but event used
.word comp_proc ; vector of compare0O interrupt

skkkkkkkkkkkhkkk
)

; STOP on error

skkkkkkkkkkkhkkk
1

error_pro

skkkkkkkkkkkkkkkkk
1

c:
halt

; stops if capture event

; Routine COMPAREO

skkkkkkkkkkhkkkkkkk
1

comp_proc::

begin

Spp
xor

srp
btjf
Id
cpl
and
cpl
btjf
or

bit_zero::

ror
adc
and

no_receive::

bit_high::
bit_ok::

no_trans

btjf
tm
jre
and
ir

or

ror
adc
and

mit::
spp
Idw

; middle of bit pulse

[PPR,RPOR,RP1R] { ; save PPR and RPP

#P7D_PG ; set page for port7
P7DR#WATCHDOG ; signal ST9 activity

#page8 ; select working register, bank 8
mode_receive,no_receive ; mode receive not selected
data,P7DR ; read input RxD bit (data.b4)
num_bit_r ; prepare a reset mask
(ptr),num_bit_r ; reset read bit in buffer (default case)
num_bit_r ; restore initial value

data.RxD,bit_zero ; jump if RxD = 0
(ptr),num_bit_r ; put read bit in buffer

num_bit_r ; shift from bn to bn-1
ptr,#0 ; increment pointer if end of byte
ptr,#end_buf ; prevent from overflow of input buffer

mode_transmit,no_transmit ;mode transmit not selected
(ptw),num_bit w ; test bit to send

bit_high ; jump if bit = "1”
P7DR,#~TxD ; clear TxD line

bit_ok ; bit state is OK
P7DR,#TxD ; set TxD line

num_bit w ; shift from bn to bn-1
ptw,#0 ; test end of byte
ptw,#end_buf ; force buffer end
#TOD_PG ; page data for timer O
T REGOR#T+DT ; load T+DT into REGOR

&7 TSN —

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

; adjust timing : delay of DT

Id status,T_FLAGR ; status flag, should read compare pending FL
clr T FLAGR ; reset pending bits
}
iret

skkkkkkkkkkkk

; Routine OUF

ouf proc:: ; hardware watchdog -> no transition on RxD
begin [PPR,RPOR,RP1R] { ; save PPR and RPP
spp #TOD_PG ; page data for timer O

Idw T_REGOR#T ; load (T+DT)-DT into REGOR
; adjust timing : advance of DT(synchronise)

or T_FLAGR,#cp0 ; launch counter with advanced value

or status,T_FLAGR ; save pending bit (ouf pending bit)
clr T FLAGR ; reset pending bits

}

iret

skkkkkkkkkkkkkkkkhkkkk
1

; Routine periph_init

skkkkkkkkkkkhkkkkkkkhkhk
1

proc periph_init [PPR,RPOR,RP1R] {

;************ |n|t TOOUTA and TOINB kkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkkk

spp #P3C_PG ; direction of signals ST9 <==> ST7537
; bO=TOINA=P3.0 : IN,TRI,CMOS <--- RxD

Id P3C2R,#00000000b : b1=TOOUTA=P3.1: AF,PP ---> Clock

Id P3C1R,#00000010b ; b2-b7:unused

Id P3COR,#00000011b ;

spp #P7C_PG

Id P7C2R,#00000000b : b0-b3 . free for SCI use

Id P7C1R,#11100000b : b6=P7.6 : OUT,PP I/O ---> WDn

Id P7COR,#00011000b : b7=P7.7 : OUT,PP I/O ---> RXTX
;. b4=P7.4 . IN,TRI CMOS <--- RxD
: b5=P7.5 : OUT,PP 1/O ---> TxD
: b3=P7.3 : IN,TRI CMOS <--- CDn

;************ |n|t tlmel’ modes kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkk

12/24

spp #TOD_PG

srp #pageF

ldw t regOr #T+DT
ldw t cmpOr#T/2
ldw t_cmplr #T

ld t tcr,#0

Id t_tmr,#oe0|co

; TO data page
; To access bank F with "r" addressing mode.
; load REGOR with period + variation
; center to the middle of the pulse
; initiate (set) clock pulse
; Disable counter
; Count down
; TOOUTB disable as timer output

; TOOUTA enable

&7 TSN

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

; REGOR reload
; No ECK clock
; Retrigger mode
; One shot mode
Id t_icr#ab_tilexa_rf ; TOINA trigger, TOINB 1/O
; TOINB nop, TOINA rising+falling edge
Id t _prsr,#0 ; No prescaling
Id t_oacr#cO_res|cl_setjou_nop ; CMPOR used to reset clock signal
; CMP1R used to set clock signal
; OUF not used
; EOC not used
; preload with "0’
Id t_idmr #gtien|cmOiloui ; enable interrupt
; enable compareO interrupt
; enable OUF interrupt
; disable comparel interrupt

spp #TOC_PG

Id tO_ivr,#t0_vect ; pointer into vector table
Id tO_idcr,#0C6h ; priority level 6

}

skkkkkkkkkkkkk
1

; MAIN PROGRAM

skkkkkkkkkkkkk
1

main::

Id MODER,#11000000b ; Ext clock NOT prescaled by 2.

; Internal system and user stacks.

ldw SSPR#sys_stack ; System stack pointer.

spp #WDT_PG ; select watchdog page

ld WCR,#wdgen ; Watch dog mode disabled, no wait states.

ld EIMR#0 ; Mask all channels interrupts.
skkkkkkkkkkkkkkkkhkkkkkkk Inltlallse I/O and tlmer kkkkkkkkkkkkhkkkkkkhkkkk

call periph_init ; Initialize timer and port
skkkkkkkkkkkhkkkhkkkkkhkhkkkkk Inlt buffers and pOInterS *kkkkkkkkhkkkkkkhkkkhkkkk

srp #page8

Id ptr.#start_buf ; set read pointer to start

Id num_bit_r,#080h ; first bit to read : MSB

Id ptw,#start_buf ; set write pointer to start

Id num_bit_w,#080h ; first bit to output : MSB

clr mode ; reset both modes
skkkkkkkkkkkkkkkkhkkkkkkk process Itself kkkkkkkkkkkkkkkkhkkkhkkkhkkkkhkkkkhkkk

ei ; enable interrupts

tOstart ; start counter (down)

vkkkkkkkkkkkkkkk Read a frame *kkkkkkkkkhkkkkkkkkkkhkkkhhkkkhkkhkkhkkkkx

wait_CD_high ; wait for the modem to receive

&7 TSN ==

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

set_mode_receive ; activate RXTX line and fill input buffer
wait_CD_low ; wait for end of incoming data
reset_mode_receive ; stop receive mode

; got the frame
rhkkkkkkkkkkkkkkk Walt for a Whlle *kkkkkkkkkkkkkkkhkkkkkhkkhkkkkkk
do_tempo ; do a tempo
skkkkkkkkkkkkkkhk Emlt the recelved frame *kkkkkkkkkkkkkkhkkkkkk
set_mode_transmit ; clear RXTX line and use output buffer

while [ptw = ptr] {

; last input byte pointed by ptr

; wait for the output buffer to be sent
} ; stop at the last input byte

while [num_bit w !'= num_bit_ r] {
; position of last bit pointed by num_bit r
; wait for the output buffer to be sent

} ; stop at the last input bit (+1)
reset_mode_transmit ; stop emission mode
di ; stop WatchDog to ST7537
halt ; wait for reset

SRR AR RR AR end of file *etktmkrkrktir btttk

== &7 TSN

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

Appendix 2. Procedure under Windows 3.1,

/*

:;|[Routine Name

R R R I I I I I

: PROCTEST

;|File Name . PROCTEST.H(compile with MS QuickC)
;|Action : is the Header of proctest.c file
;JAuthor(FN/LN) : Olivier Garreau / PPG / GRENOBLE
First rev date: 06/10/93

Last rev date : 13/10/93

Input paramet.: none

Output paramet: none

Modified var. : none
Global varia. : none
Comments . define the constants of test procedure

to be defined in a .MAK file
/
#define delay RXTX_start 6 /I wait 6 millisecond before first byte
#define delay RXTX_end 6 /I wait 6 millisecond after last byte
#define reset_delay 2000 /[wait 2 seconds for Board2 ST9 reset
#define proper_buffer 800 // wait 0.8 second to flush input buffer
#define Watchdog 3000 /I wait 3 seconds for ST9 answer
#define number_of test 10 /I perform 10 test loops MAX
#define size_buffer_in 1024
#define size_buffer_out 1024

#define test_string
#define length_string

void init_com_port
void send_frame
void receive_frame
int match_frames
void display_result
void wait

"This is a string to verify the links !”
sizeof (test_string)

(void);
(void);
(void);
(void);
(int);
(DWORD);

15/24

&7 TSN

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

/*

:|lRoutine Name : PROCTEST

;|File Name . PROCTEST.C(compile with MS QuickC)
;JAction . Performs software validation of MBO76b hardware
;JAuthor(FN/LN) : Olivier Garreau / PPG / GRENOBLE
:|First rev date: 06/10/93

:|Last rev date : 13/10/93

;IInput paramet.: none

;|Output paramet: none

:|[Modified var. : none

;|Global varia. : none

;JComments : build a link this way :

Windows PC->modeml->modem2->ST9 ->!
; I (TEMPO)
; Match test<-PC<-modeml<-modem?2 <-!

So it checks both links of network.
Compile with MS QuickC (Project: QuickWin EXE).

#include <windows.h>
#include <stdio.h>
#include <io.h>
#include <string.h>
#include <conio.h>

#include "proctest.h”

DCB dcb_comm;

COMSTAT com_stat;

char buffer_in[size_buffer_in];

char buffer_out[size_buffer_out] = test_string;// init string to send
int com_device,test_key;

void wait (tempo)

DWORD tempo; /I perform a tempo of 'tempo’ milliseconds

{

DWORD now;
now = GetCurrentTime();

while (GetCurrentTime() < now + tempo) {
/I this loop wait for 'tempo’ delay

}
}

void flush_in (void)

{

int err;

err=FlushComm(com_device,1);
if (err < 0) {

- &7 TSN

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

printf ("™*** failed to flush input buffer ******\n);
return ;

}
strcpy (buffer_in ,"Time out buffer IN I");

void flush_out (void)

o>
int err;
err=FlushComm(com_device,0);
if (err < 0) {
printf ("**** failed to flush output buffer ******\n")
return ;
}
}
void init_com_port(void)// init COM1 for bidir link
_ {
int err;
com_device=OpenComm("COM1",size_buffer_in,size_buffer_out);
if (com_device < 0) {
printf ("**** failed to open RS232 port ******\n");
return ;
}
err = BuildCommDCB("COM1:1200,N,8,1",&dcb_comm);
if (err < 0) {
printf ("**** can not setup COM1 ******\n");
return ;
}
else {
dcb_comm.fBinary = TRUE;
dcb_comm.fRtsDisable= TRUE;
dcb_comm.fOutxCtsFlow= FALSE;
dcb_comm.fOutxDsrFlow= FALSE;
dcb_comm.fDtrDisable= TRUE;
dcb_comm.fOutX = FALSE;
dcb_comm.finX = FALSE;
dcb_comm.fDtrflow = FALSE;
dcb_comm.fRtsflow = FALSE;
}
err = SetCommState(&dcb_comm);
if (err < 0) {
printf ("™*** cannot setup COM1 *****\n");
return ;
}
else {

printf ("Please reset both board 1 and board 2\n");

printf("type 'ENTER’ when done...\n");
test_key=getchar();

&7 TSN -

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

}
}
void send_frame (void)
, {
int err;
err = EscapeCommFunction(com_device, SETRTS);// SET RXTX LOW
if (err < 0) {
printf ("**** can not clear RXTX signal ******\n");
return ;
}
wait (delay RXTX_start); // wait for RXTX to be set up LOW
err = WriteComm(com_device,buffer_out,length_string);
/I SEND BUFFER
if (err < 0) {
printf ("**** can not send test frame ******\n");
return ;
}
do {
err = GetCommError(com_device, &com_stat);
/I WAIT TIL BUFFER OUT EMPTY
if (err < 0) {
printf ("**** can not wait for buffer
transmitted ******\n");
return ;
}
while (com_stat.cbOutQue != 0);
wait (delay RXTX_end); /I wait for RXTX to be set up HIGH
err = EscapeCommFunction(com_device, CLRRTS);// SET RXTX HIGH
if (err < 0) {
printf ("**** can not set RXTX signal ******\n");
return ;
}
}
void receive_frame(void)
{
int err;

DWORD read_time;

wait(proper_buffer);// wait to have a proper input buffer
flush_in(); /I flush input buffer

read_time = GetCurrentTime();
do {

err = GetCommError(com_device, &com_stat);
/I WAIT TIL BUFFER IN FULL

18/24

‘77“8-

THOMSON
 MICROELECTROMNICS

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

if (err < 0) {
printf ("**** can not wait for buffer input ***** \n");
return ;
}

while ((com_stat.cbinQue
<length_string)&((GetCurrentTime()-read_time)<Watchdog));

/[Wait until size_buffer_in

err = ReadComm(com_device,buffer_in,length_string);
/IRead frame
if (err < 0) {
printf ("**** can not receive back frame ******\n");

return ;
}
}
int match_frames(void)
{ . .
printf("String sent : %s\n”,buffer_out);
printf("String received: %s\n”,buffer_in);
if(strcmp(buffer_in,buffer_out) == 0)
{ return 1 ;}
else
{ return 0 ;}
}

void display_result(int value)

if (value)
{printf("----- GOOD MATCH !!I\n");}
else

{printfC"** BAD MATCH !l\n");}
}

// kkkkkkkkkkkkkkkkkkkkkk MAIN PROCEDURE xxxxxx *kkk *kkkkk
void main(void)

{

int counter,result,fail,err;

printf("Validation Software for ST7537 Starter Kit \n");
printf("performs a bidirectional test from : \n”);
printf("MB0O76b board 1 to MBO76b board 2\n");
printf("boundary of board 1 is a PC\n");
printf("boundary of board 2 is the ST9\n\n");

while(TRUE)

&7 TSN ==

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

{
init_com_port(); /I init RS232 com
fail = 1; /I number of communication attempts

for (counter=0;counter<number_of test;counter++)

{
send_frame(); /I send frame through network
receive_frame(); /I wait until back frame

result = match_frames(); // test if identical

display_result(result);// display result of attempt n

if (result)

break; /I get out of the loop
else }

fail ++; /I increment attempt number

wait(reset_delay);
/I wait during 2 seconds to reset Board 2 ST9

}

err = CloseComm(com_device);

if (err < 0) {
printf("™*** cannot close COM ******\n");
return ;

}
printf("End of test !.\n\n");
if (result)

{

printf("The current boards are GOOD after %dattempt(s).\n”
Jfail);

}

else

{
printf("The current boards are NOT GOOD !\n");
printf("Please send them back to designer.\n");

}
printf("End of procedure\n\n”);

printf("type 'ENTER’ to test new boards ...\n");
test_key=getchar();

== &7 TSN

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

PLM interface

Schematics of ST7537 Starter K

Appendix 3.

A0
. 3dOZEZXVN
[4-]
ozL
A
S
—] +
T| ddez ddez T 4NOOT T -
T e =="v> o == o == Y 2
7 z z 4 +10
o
WZ650TT
z T
atd 081 A+
,QM . i TIX =
4NOLY z N 9 m_m
o ““ . z ml_B%oNzw T 1 Tl b\ T
4 | s == ang9 |
vid 9 T sio A2 T m /w g8 oond = wms FE
LN LT 1 T AR ousy
sms ¢ g 9V v ﬂ\n
7z NG+ axy = v T
(9'T=HNOT e =1 Hsat oms
Bl f— Eren X (@Manadedans
22geNT, TdlL TiS3L /as ed
75 o] T .o\ T
g °8vd L8518 XLIXY 57 ems 9%
oavd am
o= I oT o
N A ow SO =
VT wms
22 | Lo 14 g 488
30 e W o | L0geNe . WYX 3 3 A A WOA uoneaidde
Z 1 - L1 a av UONEIIUNWWOI ZEZSY
g 7
HOS"¥3MOd A ol I ¢ ¢
0 v
4 zz uoneanddeuoneolunWWos 615
6 S . .
Ao 5 4N00T anzz Puzooa Z
610 1O e 50 ==
zezeng A0
20 A0 1
4N0OT .
08T iy it anez [anoot |
AGH 8y pAs) | 0z0 M 810 ==
120 N ¢
Ao+ g
L062NZ
%0 z
1]
AOT+ T
AdT+ HOS'NdD
A1IaNSTIMOd

21/24

Y/, HICROELECTRONICS

1ons

ST9 connecti

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

Schematics of ST7537 Starter K

Y/, HICROELECTRONICS

afeyspuey
Z180d
s 0%
BB -
€15
T 6es T2
Eb-E
1S ToEed
T ged TV
sawnoi Aiddns AOT+ —EP-H -
2 soquinN 1S
‘AS+ANNOYUO HLIM B BT
JWVISNOSWOHL-S9S
30VSUNS ONIddVIM X T
ssaippe Toseun
TL40d £140d
¥O103NNOD NOISNILXE 61858 X BB
BB
T Ted
2€NId 18
0101 BB
A0 =
LI o o e TEGS T e
oz TIT— IN0OT 2 o
< 9 s £l A iy E<B o
*—d h—
7 E % 3 HH g T 55d
o 0e 6z = ¢, S1S_
> o & Zd Sy oed
. % re e T T 7td
& o To— 2N ——mr e
> 8T L1 - L1d o —2—H
iz oT ST — oTd
vT €l — . STd L1d XX >
a T < v1d oLd =
o 6 £1d Sid L ows
8 n 3 z1d 0v3061S vid 2
9 s 5 T1d €d s
vooe otd 2Ld o
T 1 d S0l Td L | saxt € o— T
T T0d £0d oLd o 7.
90d
A0 —0d
50d 20A NS+ o
3 SNAS 0T T
._. Sod vod n 7=
JTON oy 6t —0d €0d n z, m ano 3 I o
% & < £0d i ERRVEN anev L " s
]] oo S Vv v L9srgzIo [}
g e e p—— 19 — 0d s s M 3 L I EEEEEEEE OOAV f—= oyl
€ 18 T Vv 4 ¥ 8 X X dddddddd Z
e e TS ONASAXL/AxY
0 sz OIN el v| o oltl el vls
v e 7ed g €l €| o o sle| 7|t] 97| 7|7 AQT'HNOT 300N ONAS
o5d A0
T & T Tvd__ lslslrlelz]t o Mo — T oMs 1NOSNIS
Sz 0z o1 Iz LRIEE EE[E I8
7 - [om—i 7y v d|d|dd|d]dd [o 300N ONASY ol feyspuey
I 7 — S— 7
Ovd ooer iz 2 USq 51840d
RSN SSINARYE] . 820 el T
a u e s T84 T . As+
¥—qg 01 6 4 AQT'NOT .
¥—q 8 A
pinoy
—q 9 s —vmoor - (0]
0 ¢ ‘ s |
¥—q ¢ 1 no
T ot 300N SNONOUHONAS
Y
As+
20 20
ssadwing
wi
340
aLvso8 T wirliod
1 p—< o)
wiriod E2d
NO
B Swos
92s

22/24

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

Schematics of ST7537 Starter Kit: Power supply

NO

r

AGZ'4N0T
AOT'HNOT 2 z| anoot z z
Azl ==y = 8 el —
T T T T
z
4 g T
GOBZINT
AG+ 101
AOT+
uIS-TeaH
oY
AGZ'4N0T
AST'HNOT 2 z| 4noot z z
Y10 el —— 010 10 mml @ —
T T T T
z
4 € T
Aw AD0TS8L1
AOT+ 2ol
UIS-TesH

MNOovr

V9'0/NSET

4NOOT
LD

4NO0OT
60

NO

o]

NG+

O
NG+

«|E
vV

NOT+

23/24

MICREELECTRONMICS

‘ius-nmou

SYNCHRONOUS COMMUNICATION WITH ST9 MFT

THE SOFTWARE INCLUDED IN THIS NOTE IS FOR GUIDANCE ONLY. SGS-THOMSON SHALL NOT BE HELD
LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS
ARISING FROM USE OF THE SOFTWARE.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics
assumes no responsability for the consequences of use of such information nor for any infringement of
patents or other rights of third parties which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as
critical components in life support devices or systems without the express written approval of
SGS-THOMSON Microelectronics.

11994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I°C Components by SGS-THOMSON Microelectronics, conveys a license under the Philips
I2C Patent. Rights to use these components in an FC system, is granted provided that the system
conforms to the I1°C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - ltaly - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom -
U.S.A.

= &7 TSN

